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Shell-model matrix elements in the neutron-proton 
quasi-spin . ~ formalism using - vector coherent states 

J P Elliott, J A Evans and G L Long 
School of Mathematical and Physical Sciences, The Univenity of Sussex, Falmer, 
Brighton. BN1 9QH, UK 

y*Ee$.,& !9 yebFAaF,, !?9? 

Abstract. Vector coherent state theory for the O(5) group is used Io obtain a general 
formula for the shell-model matrix elements of any i-alar two-body interaction in a 
j-shell of neutrons and protons. !3plicit results for arbitrary T, j and even n are given 
for states with seniority not exceeding four. 

1. Introduction 

The seniority classification of states in a single j-shell of neutrow and protons is most 
simply described by the extended quasi-spin group 0 ( 5 ) ,  or Sp(4), whose generators 
are the three J = 0 ,  T = 1 pair operators At, the three pair destruction opelators, 
L l l l  L l l l c I  Y Y q J ' L 1  "yC1aLLY.a a,,u L l l r  .IY..IYCI " p , . a L " L ,  l l l " I L  W " " C 1 U C L 1 L 1 J  L L L h b l l  a1 

H ,  = ( n  - 20) /2  where R = j + 1/2. H ,  measures the particle number relative 
to the middle of the shell. The irreducible representations of 0(5) are denoted 
( w t )  where w is related to the seniority v by w = 0 - v/2 and t is called the 
reduced isospin. Physically, v is the number of unpaired nucleons and t is their 
isospin. The complete set of states within ( w t )  is then formed by adding any number 

set is finite. Naturally, we need a classification of states within ( w t )  in which the 
nucleon number n and the total isospin T are definite. These two quantum numbers 
correspond to the sub-group SU(2) x U(l) of O(5). For most states, the two labels 
n and T are not sufficient for a unique classification within ( w t )  and there is no 
group contained in O(5) and containing SU(2) x U(l) which can be used to provide 
additiona! !abe!s, The prohlem of introducing a complete orthonormal classification 
is therefore a difficult one which has attracted much attention in the  past [1-4]. It 
has also acquired new interest through the mapping [SI from the shell-model to an 
isospin invariant form, IBM3, of the boson model. The advent of vector coherent 
state theory [&lo], has provided a new line of attack on the problem of classification 
within O(5). 

The main purpose of this paper is to derive a general formula for the matrix 
elements of an isoscalar two-body interaction and to give results for states up to 
seniority v = 4 with even n. In particular, this displays the dependence of the 
matrix elements on the conserved quantum numbers n and T. A knowledge of this 
dependence will lead, in a later paper, to a derivation of the nT-dependence of 
the IBM3 Hamiltonian. In separate appendices we also discuss the relative merits 

*t.- .l.-- :",."":" ,."-*"+,.- "..A tLn ".....kn- ,...am+"r .",.e+ ^,.....~":n".l., +"LO.. "" 

nf n a k  I with .. 11.. nmrlnrtc of the n n P i i t n r c  At, >.e ?z,!i p'i~cip!p- ensures thit the 
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of two different orthonormal O(5) bases and give the K-matrix elements for the 
three-fold states of the representation ( w 2 ) .  In general terms, the derivation of the 
nT-dependence of the shell-model matrix elements is equivalent to the calculation 
of O(5) Wigner coefficients, most of which are not yet known. The method used 
here is direct and exhibits clearly the effect of multiplicities in the Clebsch-Gordan 
reductions. 

J P Elliott et a1 

2. The coherent state formalism 

This section contains a brief r6sum6 of the use of vector coherent state$ in the O(5) 
classification problem, which is more fully described elsewhere [ll, 121. We attempt 
to give a simple and concise treatment The vector coherent state is defined as 

12, wtm,)  = e”.A’(wtm,) (1) 

where Iwlm,) is a member of the (2t+l)-dimensional space of states of full seniority 
n = v = 2( C2 - w )  and isospin t and z = ( zl, z 2 ,  z3) is a vector of complex variables. 
Precisely, we use At = m ( a l  x at )J=a*T=l .  Each shell-model state I+) in the 
O(5) representation ( w t )  has its z-space representatives 

+ w t m < ( z )  = (z,wtmtl+) (2) 

and the complete z-space state, distinguished by a round bracket, is written 

mt 

where Iwtm,) denotes a (2t+l)-dimensional vector space spanned by m, and 
mapped onto the full seniority states Iwlm,). The choice of the operator K is 
described below. .,I 

Ib keep the notation simple, consider that part of an operator V which transforms 
from (ut) to (w’t’). Clearly any operator may be broken down into such parts. The 
corresponding operator y( V) in r-space is defined hy 

y( V)l+)  = K-1 E(Y, w’t“: IVl+) Iw‘t’mi) (4) 
m: 

which is consistent with equations (2) and (3). 
It is convenient to use the Bargmann scalar product [ll] in r-space so that z and 

V are adjoint. The mapping defined in equations (2)-(4) is not then unitary if IC 
is the unit operator but may be made unitary by a suitable choice for IC. Since the 
states of a given ( w t )  are generated by the pair creation operators, it is sufficient to 
determine K from the unitarity condition on At, namely -,(At) = y(A)t. In fact 
this leads [ll] only to an equation for ICKt and IC is found by diagonalizing IiKt 
before taking the square root 

It is easy to construct a convenient orthonormal basis in r-space, 
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where p = (n-u)/Z is the number of pairs and the set of functions ZT, with isospin 
Tp = p , p  - 2 , .  . . ,l or 0 spans the representation ( p  0 )  of the group U(3) in the 
three components of z. The function 2.. is a homogeneous polynomial of order p 
in the components of z and is the Bargmann form of the threedimensional harmonic 
oscillator wavefunction. The square bracket in equation (5) denotes vector coupling 
of T, to t to give a resultant T but we follow Hecht's convention for the order of 
coupling ITp to simplify phase factors at a later stage. 

The matrix K K t  is not generally diagonal in the basis (5) but we may introduce 
the basis of eigenvectors of K K t  which are related to the basis (5) by a unitary 
matrix U, 

I ( w ~ ) P ~ T M T )  = u?plil(wl)~T,TMT) (6) 
TP 

with 

K K ~ I ( ~ ~ ) P ~ T M , )  = X;l(wt)piTM,). (7) 

K may also be taken diagonal in this basis with values 6. 
To construct the shell-model bases corresponding to the z-space bases (5) and 

(6) we see from equation (4) that r ( A )  = K-lVIC so that r ( A t )  = I C t z ( K t ) - '  
which implies that 

If K is normalized to be unity when acting on a state of full seniority, equations (3), 
(4) and (8) lead to the correspondence 

[Z?'(At)lwl)] T Mr - Ktl(at)pTpTMT) (9) 

= K/TpI(wt)piTMT) 

On the left-hand side of equation (9) is the non-orthonormal shell-model basis with 
p pairs coupled to isospin T, which is coupled to the full seniority state in the same 
order IT as in equation (5).  Explicitly, the matrix elemens of IC are given in terms 
of the sohtions of the eigenvalue problem by 

The IC-matrix of equation (13) is Hermitian. By using the inverse matrices, equations 
(10) and (11) give the desired orthonormal shell-model bases, denoted on the left by 



4636 

angled brackets, which correspond to the a-space bases (5) and (6), 

J P Elliott et a1 

The basis (14) is called the 'most natural' in [ll] since it corresponds to  the 
eigenvectors of K K t  but in appendix A we show that there is also some merit in the 
basis (15). 

The unitarity of the mapping (3) enables us to write the shell-model matrix- 
element of any operator V in terms of a r-space matrix element of y(V) ,  

( P I V l 4  = (PIY(V)I+). (16) 

TO calculate the right-hand side of equation (16) it is best to separate out the Ii- 
matrix factors by defining r( V )  = Ky(V)IC-' so that l-(V) is the simpler mapping 
defined by equations (3) and (4) with the li-' factors removed. Furthermore, l-( V) 

two bases (14) and (15) respectively, we have 
is iiioie vL=p!y eM!ua:eb iG the Tp bash (5 )  athe: in the i-basis (6). Hence, in the 

For brevity we have omitted the labels ( u t ) p T M T  from the right-hand side in these 
matrix elements and the corresponding primed labels from the left The matrix 
elements of IC again come from equations (12) and (13). In the next section we 

side of both of equations (17) and (18) for a general isoscalar two-body interaction. 
_I ---- I L ^  .LA --I-..,--:-- ^C .L̂  -...-:.. "1" _^_." ^C T-,.,, --"..:-,.,I -- .I.- -:"I.* L ^ _ A  
UCX.IIVL~ L L ~ G  ~ ~ , U I . ~ . L L U I L  VI ~nr uiauv. cjlcii i~iim VL I Y rr;yuu=u u t 1  LIIG jrgrtr-rrariu 

3. The matrix elements of an isoscalar two-body interaction 

p,e  geae:a! trYn=b&; she!!-mde! i!lteractk!!! mzy be rsz!ysed [I] 

v = v(00) + v(") + v(20) + V W  (19) 

into parts with definite O(5) character. Since H conserves particle number and 
isospin, all parts have H, = T = 0. The second part has a very simple explicit form 

where E, = ( J lV l J )  is the two-body shell-model energy. Hence the contribution 
from V(") depends only on the nucleon number through H ,  and is independent 
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of all other labels for the many-nucleon system. Since V(O0) is an 0(5) scalar it is 
obviously diagonal in ( w t )  and a multiple (wt lV(OO)(wt)  of the unit matrix within 
(wt) where Iwt) denotes the state of full seniority R = U = 2(n- w )  with p = 0 and 
T = t. The value of this matrbt element is discussed in section 4. The purpose of 
this section is to derive a general formula relating the many-nucleon matrix elements 
of the last two parts of V to a small number of reduced matrix elements. (Because 
0(5) is not simply reducible, the Wigner-Eckart theorem does not lead to a single 
reduced matrix element for each part.) Results for low even seniorities, up to v = 4, 
are given in appendix C. Explicit forms for the reduced matrix elements are obtained 
in section 4. 

Assuming that the matrices K are known, see appendix D, our objective is to 
find the r-space matrix elements 

( ( w ' t ' ) p ' T ~ T M T l r ( v ) l ( w ~ ) P T p T ~ T )  (21) 

on the right-hand side of equations (17) and (18) for the last two parts of V in 
equation (19). For some chosen ( w t )  and (w't ') the operator r(V) is conveniently 
analysed into multipoles or expressed in an m'm basis 

r(v) = Cg(.) . G(') = gm:m,Iw't'm:)(wtmll (22) 
r mim, 

where G(') is independent of z and is defined by 

[w' t ' l1d7)/wt)  = 1 (23) 

while g(') is a function of x and V and the two forms of g are related by 

where the matrix element on the right refers only to the functions Z in equation (5). 
Recall from section 2 that r is defined through equations (3) and (4) with K 

removed so that from equation (3), 

while from equation (4), 
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Comparison of equations (26) and (27) gives the defining equation for the operator 
g, where we have also used equation (l), 

J P Elfiott et nl 

Here, A, = (-l)q(AL,)t and z, = (-l)q(z:,)*. 
Our task is to evaluate the shell-model matrix element on the left-hand side of 

this equation for the last two parts of V in equation (19). The first step is to note that 
V(2d) with s = 0 or 2 is a member of a standard irreducible O(5) tensot operator 
V(") H I T  with HI = T = 0. Commutation with the generators A, will therefore produce 
other members of the tensor operator with known coefficients, 

where the notation on the left implies the vectorcoupled commutator. Equation (29) 
follows the convention of Hecht [12] who also gives a procedure for calculating the 
reduced matrix elements of At. Using equation (29) we may write 

The sum over m < 2 and c is very limited and the full set of coefficients amc is given 
in table 1. The notation zm(c) denotes m factors of x coupled to isospin c. Using 
equation (30) and introducing a complete set of intermediate states, the left-hand 
side of equation (28) becomes 

am,(w'l'm:I2m(c).V(2~) - m c I ~ t q T P ' r ~ ) ( W l q T q r ~ l e ' . A I ~ ) ( K l ~ t ( w t q ~ ) ) ~ ~ T ~ .  
mcrpT:T, 

(31) 

Because of their simple structure, we have chosen the intermediate states to be the 
non-orthonormal set on the left of equation (9). They are not to be confused with 
the orthonormal set on the left-hand side of equation (U). The KIit factor also 
comes from equation (9), being the inverse of the norm matrix which is necessary in 
the resolution of the identity in a non-orthonormal basis. The number q of pairs in 
the intermediate state is given by q = m + w - w', since H ,  is additive with value 
-w in states of full seniority in (wt ) .  It is always possible to take w' 2 w so that q 
can never exceed 2. 

Table 1. The coefficients amr of equation (30). 
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Next we insert the explicit form for the intermediate state8 from equation (9), 
through the functions Z ( A t ) .  Then, from equation (29), we may write 

where the second term on the right makes no contribution when used in equation 
(31). The full set of required coefficients b is given in table 2. With the help of the 
identity 

A ~ = . A  = v e " A  (33) 

and some rearrangement of the angular momentum coupling, the expression (31) 
then reduces to c ( -1Y-"-* ' -  Tqtmca,,b(mcqT;u)(w't'l lV~~,UIIwt)~ilj .  
m,uemzrT,T: 

Comparison with the right-hand side of equation (28) shows that the coefficient Of 
+wtmt(z) in equation (34) may be identified with g,:,,. Now, using equation (24) 
and carrying out the sum over m gives 

x (I<rct(wtqT))$Tq.  (35) 

This expression for g(?) may now be inserted into equation (25) to obtain the matrix 
elements of r ( V ) .  One need only calculate the matrix element3 of the z and V 
operators in equation (35) in the z-space. However, a further simplification may be 
made by decoupling x and V in equation (35) which enables the ?-sum in equation 
(25) to be carried out, giving finally 

( (w ' t ' )p 'T;TMTIr (  v ( * q ( w t ) p T p T M T )  

= ( - ~ ) T p t T ~ t l ' ~  P P  pc E( - l ) U ~ ( w ' t ' l l V ~ ~ ~ , , ~ I w t )  

x ( ( P O ) T p ~ ~ Z ~ ~ ~ ~ ~ ~ ~ ( P -  P 0)Y) C(-1)'(2T + 1 )  

U 

x am,b(mcT;u)dqTq ~((P'O)T~~I"''"II(P - q O h )  
mcT.T,' Y 
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Table 2. The coefficients b(mcqTiu) in equation (32) for the O(5) representations 
(23) with s = 0 and II = 2. 

3 = 0  s = 2  

W' m e q T; u = O  u = l  u = 2  u = o  u = i  u = z  

w f 2  2 s 0 0 1 0 0 0 0 1 
w + l  1 1 0 0 0 1 0 0 1 0 

U 0 0 0 0  1 0 0 1 0 0 
2 8 1 1  0 -fi 0 0 -Js -6 

2 a 2 0  Js 0 0 0 0 1 
2 s 2 2  0 0 fi " J r  
1 1 1 1  Js 0 -fi -6 -3/& -1Jfi 

In this expression, d q T q  is the normalization constant for the function ZK), 
taking the values d = 1 for q = 0 or 1 and d = 1/& or -l/& for q = 2 and 
Tq = 2 or 0 respectively. The range of values for m and c is given in table 1 and 
for T, T, and Ti in appendix B. Recall that q = m + w - w'. The full set of matrix 
elements of ICKt required in equation (36) is given in appendix B. The values of U 

in the reduced matrix eiemens of W s :  in this expression, for given ( w i j  ana (w;i:j, 
are determined by (i) the H,T structure of the representation (2s)  and (ii) the 
triangular condition on utt'. For each w - w' the values of U which satisfy condition 
(i) are given in table 2. The number of allowed U values is equal to the multiplicity 
of (w' t ' )  in the O(5) reduction of the product (2s) x (ut). Only six reduced matrix 
elements of the z ' " ( ~ )  operators are required in equation (36). Since the z-space 

belongs to (mo),  the matrix elements are given in terms of the well-known 

..c ___^. :..- I r ~ ~ n \ m  \ Le?-..-.. .L̂  C ( T I I 1 ,  -~ __^^^.._ ...:..- / ~ ~ n \  ^__I .L̂  -----.-- 
W~VGIULILLLUII l ipu) ip)  ~ ~ ~ r i p  io LIIC a~(>, r~pr~,~nrarwn t p u )  a i ~  LIIG u y ~ i a w ~  

SU(3) Wigner coefficients 

We use the Wigner coefficients listed in table 2 of [12] together with the twice-reduced 
matrix elements (pllz(O0)11p) = 1, ( p + l ~ ~ z ( l o ) ~ ~ ~ p )  = (p+l) ' / '  and (p+21[~(~")I lp)  
= ( ( P + l ) ( P + 2 ) ) ' / ?  

??..e mmpute: a!geb:a pack2ge KEEUCE hrs bees .:sec! to e%!%?% the b:m!2 
(36) for the matrix elements of r( V), for all states with even n and reduced isospin 
t =0, 1 and 2 for arbitrary j ,  in terms of the reduced matrix elemens of V(2d) .  The 
results are given in appendix C. The reduced matrix elements of V(") are clearly 
independent of n and T and may therefore be treated as parameters in a discussion 
of the nT-dependence of an arbitrary interaction. However, their relation to the 

To obtain the final shell-model matrix elements of V we must return to equations 
(17) and (18) and insert the A'-matrix elements. Formulae for the ICIi t  matrices 
were given in [ll, 121 for reduced isospin t = 0, 4,l and $, for the two-fold multi- 
plicity in t = 2 and for small p. In  appendix D we give formulae for the three-fold 
multiplicity in 1 = 2, which is then sufficient for all states up to seniority v = 4. 

We-body E2!k$ e!eme!E of the i!!terzc!i9!? is disc!!sseh i!! the next SPaiaa. 
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4. The reduced matrix elements of V?L,= 

The two-particle creation operators belong to O(5) representations (11) and (10) 
for even and odd J, respectively, and, in the notation of (121, are written 

where the suffices denote HI, T and MT. Hence the general two-body interaction 
may be written 

=-‘h ~ J ( ~ ~ ~ ” ( J ) x ~ ~ ~ ~ ( J ) ) ( ” +  E J ( T ~ ~ ~ ’ ( J ) X T ~ ~ ) ( J ) ) ( ~ )  (39) 
J even J odd 

where the destruction operators are given by 

and the notation means a dot product in J and a temor product in T. With 
the help of the O(5) Wigner coefficients, we now break the interaction into its O(5) 
constituents 

where the sum runs over ( a b )  = (22) ,  (20 ) ,  ( 1 1 )  and ( 0 0 ) .  In detail, 

VJ:b) = -6 E J ( ( l l ) l l ; ( l l )  - l l l l(ab)OO)T$b)(J even) 
f eYen 

+ E J ( ( l l ) l O ; ( l l )  - 101l(ab)OO)T~zb)(J odd) 
J odd 

where the operators Ti:*) are special cases of the O(5) tensor products 

Titb)( J even) = c (( 1 l ) h , t , ;  ( 1 l ) h -  hltzll( ab)hu)(Tl : : l (  J )  x2’F-’LLiJ J ) ) ( ” )  
h l i l t ,  

(4Tj 

Ti tb) (J  odd) = ( ( l O ) h , t , ;  ( l O ) h - h , t z l l ( a b ) h u ) ( ~ ~ ~ ~ ! ( J ) ~ T ~ ~ ~ , ~ ~ ( J ) ) ( u ) .  
h i i l i ,  

(44) 

From equations (42)-(44) we have, not only the separate O(5) components of 
the interaction, but also the definition of what might be called the ‘extensions’ Vi:*) 
of the interaction which we require in equation (36). The O(5) Wigner coefficients are 
given in table 3 and some simplification of equations (43) and (44) may be made by 
using commutation of the T-operators. (In particular this reduces the antisymmetric 
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operator V$') to the simple form given in equation (ZO).) In fact, we need matrix 
elements of the VJ:21u between states of full seniority n = U. 

are 
given in table 4 and equations (45)-(47) 

J P Elliott et a1 

For matrix elements diagonal in the seniority, the operator forms for 

FJ = c ( 2 J ' +  l ) E J ,  
J' 

and T(') is the isospin operator. The upper index 'e' or '0' on FJ means that the sum 
over J' is restricted to even or odd J' respectively. When v = 0 or 1, the operators 
in the last six columns of table 4 and in equations (45)-(47) give no contribution. For = i, matrix eiements of operdiors are 

( j Z ~ ~ \ l ( ~ ~ ~ ) ( J ) x ~ ~ ~ ~ (  J))(u)\ \ j2jt)  = ( - 1 ) 2 6 j J S , 1 8 / i  (49) 

while for seniority v = 4, they can be given only in terms of the two-body fractional 
parentage coefficients which define the state of seniority four, 

x (j4a'.h'4jZJ'z', j Z J z )  (j4aJ,4jZJ'z',  j Z J z ) .  (50) 

For a change of two units in seniority, U' = v - 2, equation (36) needs reduced 
matrix elements of V'::). Angular momentum conservation prevents any such term 
for v = 2, v' = 0. For v = 4, v' = 2 the required matrix elements are given in table 
5 in terms of the quantities 

where the sums are restricted by the conditions that both z + J and z' + J' should 
be odd. The isospin labels z., z' may be 0 or 1. 
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0 0 - N O - N O  

II II II II II II II I1 
a s a a s a a a  - - h 

N 
N 

A -  
0 0  
O N  - v v v  
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Table 4. The reduced matrix elements (jz.ii'llV~~:'llj4mjt) in terms of the f,,, given 
in equation (51). 

t' t s = O , u = 1  s = Z , u = 1  s = z , u = z  

For a change of four units in seniority, only V",? contributes and with U = 4, 
U' = 0 the required matrix eiements are 

Using vector coherent state theory, we have derived a general formula (36) for the 
matrix elements of each irreducible O(5) component of a general isospin invariant 
two-body interaction in the orthonormal shell-model basis introduced in an earlier 
paper [ll]. Analytic results are given for even n and t =O, 1 and 2 which is sufficient 
for seniority U < 4 in terms of a minimum number of reduced matrix elements which 
define the interaction and the dependence on the conserved quantum numbers n and 
T is clearly shown. Although the calculation of reduced matrix elements in section 4 
is specific to a single j-shell, the results in earlier sections, including appendix C, are 
also valid for a set of j-shells with Cl = C,(j + i). 

As an illustration consider the case j = 7/2,  U = 2,  t = 1,  n = 6, J = 2, 
T = 1. Here p = 2, so that T, = 2 or 0 and there are therefore two independent 
states. This is because, in the U(S)X3p(8)30(3) classification scheme [13], the (1100) 
representation of Sp(8) occurs twice in the representation [2211] of U(8). The matrix 
elements of r(V) are given below in the notation on the right-hand side of equations 
(17) and (18): 
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in terms of the reduced matrix elements (wtllVJ:*)llwt). These results have been 
obtained by using tables C1 and C2 with w = w’ = 3 and 1 = 1‘ = 1. The last 
two equations require exploitation of the symmetry mentioned in appendix C. This is 
achieved by inserting T = -2 in the listed formulae rather than T = 1. The reduced 
matrix elements in these equations can be evaluated as linear combinations of the 
EJ by use of table 4 and equations (45)-(49). Using values for the E, derived [14] 
from the experimental levels in 42Sc we find, in MeV, (3111Vd,oo)1131) = -28.76, 
( 3 1 ~ ~ V ~ ~ 1 ) ~ ~ 3 1 )  = 40.32, (3111VJp)1131) = -13.40, (3111&(?’1131) = -3.72, 
(3111Vd,22)1131) = 0.34, ( 3 1 ~ ~ V ~ ~ * ’ ~ ~ 3 1 )  = 0.29, (3lllVi’,22’1131) = 0.08. This leads 
to the unsymmetric matrix 

which has eigenvalues -18.72 MeV, -20.26 MeV The final shell-model matrix is 
now obtained by means of the transformation K- ’ r (V)K.  The matrix IiKt for this 
case is available from [ll], and K may then be calculated by either of the prescriptions 
in equations (12) and (13). In particular equation (13) gives 

3.02574 0.10740 
IC = 0.10740 3.91431 (59) 
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and the resulting matrix is 

J P Elliott et a1 

0.73 -19.74 

Wis is symmetric as expected and has the same eigenvalues as r(V).  It is clear 
that there is considerable mixing of Tp in the eigenstates, confirming the conclusion 
of earlier work [5]. A curious feature of (60) is that its eigenvectors are actually 
independent of the interaction used. This is a special feature of the j = 7/2 shell 
and does not occur in higher shells. 

The physical significance of this illustration is that it refers to the nucleus 46Ti 
and typifies the description of the lowest 2+ states in spherical even-even nuclei. It 
was shown in [5] that the mixing of T, leads to a lowest 2+ state very close to having 
'full symmetry' with respect to the group U(6) in a boson picture of nucleon pairs 
115, 161. The orthogonal partner has 'mixed symmetry' in this sense and there has 
been considerable interest 117, IS] in identifying such states and measuring the purity 
of the U(6) symmetry. The existence of the general shell-model results in this paper 
will enable us to study the boson mapping in detail and, in particular, to investigate 
the way that it depends on the conserved quantum numbers n and 7'. 

Appendix A. The two orthonormal shell-model bases 

We first note that the bases (17) and (18) have the same traces 

and 

These relations are useful in checking since the r-space matrix elements on the 
right-hand side do not involve the I( matrices for the many-nucleon states. 

Table Al .  ?he i-basis expansion coefficients at equalion (A7) for stell-model matrix 
elements (i'lvli) in terms of r-space matrix elements ('I;lP(V)lT,J for the case 
j=ll/Z,n=B,u=Z,t=l,T=l. 

(oir(v)io) (oir(v)iz) (zir(v)io) (zir(v)i2) 

(OlVlO) 0.99351 -0.08026 -0.080% 0.W648 
(OlVl2) 0.09345 1.15681 -0.W755 -0.09345 
(ZlVlO) 0.06893 -0.W557 0.85327 -0.06893 
(ZIVIZ) O.o(M48 0.08026 0.08026 0.99351 
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It has been pointed out 1111 that the matrices U are nearly diagonal in many 
realistic examples, with each state i being dominated by a particular T,. If as an 
approximation U is taken to be diagonal, it must be the unit matrix and the two 
bases (14) and (15) are identical. Both equations (17) and (18) then reduce to 

Pi I W",) = m( Ti I U V )  IT,). 

P; I VIT,)' Fc* m( TP I V )  I ) ('4.4) 

I VIT,) I ( Ti I W) IT, )( T, I V )  I )* I l P  . ( k 5 )  

('4.3) 

The lack of symmetry on the right-hand side of this equation is due to the lack of 
unitarity of r. For a Hermitian V this may be exploited since also 

which leads to 

In this approximation, the X have been eliminated so that no knowledge of the 
many-body K matrices is required. It is, however, necessary to know both the matrix 
elements on the right-hand side of the equation and, in many cases, one of these is 
more complicated to calculate than the other, see section 3. 

It is worth commenting that the exact eigenvalues of r( V) are the same as those 
of V. Hence the introduction of the IC-matrices in equations (17) or (18) is not 
strictly necessary in finding the eigenvalues. However, this requires the full matrix of 
r( V), which is not symmetric. With the help of equations (17) or (18) it is necessary 
to calculate only one half of the r( V) matrix, taking advantage of the symmetry of 
the V matrix. 

'Ib compare the merits of the two bases (17) and (18) it is clearly necessary to 
go beyond the simple approximation of assuming U to be diagonal. We therefore 
investigate some examples. 

The case j = 11/2, n = 6, v = 2 , 1  = 1, T = 1. 
In this example, the number of pairs is p = ( n  - u ) / 2  = 2 so that T, = 2 or 

0 and K I C t  is a two-by-two matrix. From equation (25) of [ll] this matrix is easily 
constructed and diagonalized to give A, = 26.1065, A, = 35.3935, with 

( i =  0) ( i = 2 )  

= U +  = (T, = 0) 0.99675 0.08052 
-0.08052 0.99675 

With these numbers, the coefficients of each of the matrix elements on the right-hand 
side in equations (17) and (18) are soon calculated and the results are given in tables 
A1 and A2. 

Table Al. As lable A1 for lhe orthonormal T,-basis of equation (18) 

(nir(v)io) (oir(v)iz) (zir(v)io) (zir(v)iz) 
(OlVlO) 1.00015 0.01318 - n . o i m  -0.00015 
(OlVlZ) 0.01318 1.16220 -0.wO15 -0.01318 
(ZlVlO) -0.01134 -0.OMIlS 0.86Of.3 o.nii34 
(21V12) -0.00015 -0.01318 0.01134 1.wOIS 



4648 J P Elliolt ef a1 

It is clear from the tables that the off-diagonal coefficients in table A2 are much 
smaller than those in table 1. There is also further cancellation in table A2 be- 
cause, although the matrix of F(V) is not symmetric, even for Hermitian V, it is 
approximately symmetric in practice. Hence there will, for example be approximate 
cancellation between (Olr(V)12) and (2lr(V)lO) in the expression for (OlVlO). No- 
tice that the diagonal coefficients for 2'; = T, in table 2 are very close to unity. In 
addition the product of the diagonal coefficients for (OlVl2) and (2lVlO) is very close 
to unity (1.00028) and so justifies the approximation (A.5). A similar calculation for 
the case j = 15/2, n = 12, v = 4, 1 = 2, T = 2 has off-diagonal coefficients in 
the i-basis of table A1 up to  0.51 while the greatest such number in the T,-basis of 
table A2 is 0.10. We therefore conclude that the approximation (AS) is good in the 
T,-basis but would be much less accurate in the i-basis. 

In the basis (S),  the rows and columns of KKt, for particular p and T ,  are 
labelled by T, = p ,  ( p  - 2) ,  . . . , 1 or 0 subject to the triangle constraint IT - ti < 
T, < T + t. These conditions determine the size N ,  of the matrix. However, for 
values of p close to its maximum of 2 j  + 1 - v,  the Pauli principle may restrict 
the number of shell-model states to some number up < N,. From equation (14) 
it may be seen that the 'missing' states, which vanish identically, correspond to the 
zero eigenvalues of KKt and hence that the physical states are restricted to i = 
1,2,. . . , up with Xi > 0. Although the IC matrix is then singular we may still use the 
expression (Kt);;; = U i p \ / f i  from equation (12) for the restricted set of states i 
in equation (14). In this exceptional situation, the basis (15) loses its orthonormality, 
and its linear independence, because of the vanishing norm of the missing states. The 
zero eigenvalues would he omitted in using equation (13) to construct the 
matrix elements in equation (15). Since, in practice, each i-state is found to be 
dominated by a particular T,, one could omit those shell-model states labelled by the 
T, which dominate the excluded i and apply a GramSchmidt orthonormalization to  
the remaining T,. 

Appendix B. The K K t  matrices in equation (36) 

For the KKt matrices in equation (36) we are concemed only with small numbers 
of pairs Q = 0, 1, and 2 and the KKt were given in [12]. (Note that the KKt 
matrices in equation (17) and (18) may have a large number p of pairs.) The results 
are: 

For q = 0, trivially KZit = 1 with T = 7" = 0 and T = t. 
For Q = 1, KKt is onedimensional with T, = Ti = 1 and takes values ( w  + 

t + l), ( w  + 1 )  and (w  - t )  for T = 1 - 1, 1 and t + 1 respectively. 
For q = 2, K K t  is again one-dimensional for T = t - 2, t - 1, t + 1, and 

1 + 2 with values (w  + t ) ( w  + 1 + l ) ,  (w + l ) ( w  + 1 + l), ( w  + l ) ( w  - t),  and 
(w - t ) ( w  - t - 1)  respectively. For T = t, there is, except for very small w = t, a 
two-dimensional matrix for KKt with T, = 0 and 2 which may be inverted to give 

' I ,  

(KKt);: = { ( w + l ) ' - t ( t + 1 ) / 3 ) / D  

(KKf);; = ( I C K t ) ; ;  = - { t ( t + l ) ( 2 t - l ) ( 2 t + 3 ) / 1 8 ) " ' / D  

(KKt);; = { ~ ( ~ + $ ) - 2 t ( t + 1 ) / 3 ) / D  

where D = (w + l ) (w  t $)(U - t ) ( w  t t + 1). 
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Appendix C. The r-space matrix elements of F( V )  from equation (36) 

The shell-model matrix elements of the component V(") of the interaction are given 
by equation (20). For the invariant component V(O0), the shell-model matrix elementr 
are equal to the reduced matrix element, given irtable 4 and equations (49) and (50) 
for 2) = 2 and 4. For the remaining components V(28) ,  table C1 (s = 0 )  and table C2 
I .  - Q, A..- *I.- r,.nff̂ :n-,̂  ,.Cn̂ L̂ *"rl.."^l I . ,* ! , , .AZS) I,. .r\ :" .I.̂ 
(3 - L, gLrG L l l C  WCIIICI*I .LI  "L C I C L L  LCUYCCU 11111,IA Ci,Ci,,,C,II {bo L , ~ * u - w , u ~ ~ w ' ,  111 Lllr 

expression (36) for the matrix element elements ((w't')p'TiTIT(V(2S))l(wt)pTpT), 
as functions of w, p and T for each relevant Tp and Ti. They must be multiplied 
by the appropriate reduced matrix clement (sec section 4) and summed over the 
different values of ZL given in the tables. Finally, to obtain the shell-model matrix 
element, the KIC-' factor from equations (17) and (18) must be included. 

w = j + 1 /2  - v / 2 ,  p = (n - v ) / 2 ,  p' = p + w' - w. The tables include all matrix 
elemena needed for even n and 2) < 4 but they have more general validity. In each 
table, the entries are ordered first by the value of U' - w = 2,l or 0, then by t't and 
finally by .Ti and T,. It is sufficient to consider w' > w since the final matrix of V 
is symmeaic, although T(V) is not. For w' = U it is similarly sufficient to restrict 

T' P - Tp + w' - w is even, together with the usual triangle rules on tT,T and t'TiT. 
A few matrix elements of T(V(20)) which satisfy these conditions nevertheless vanish 
and are omitted from the tables. They are Ti = T 1, T, = T 7 2 for w' = w + 1, 
t' = 1, t = 2 and Ti = T f 2, T, = T 7 2 for w' = W ,  1' = t = 2. Entries for 
even and odd T - T, are grouped separately since the parities of T - T,, and T - p 
= T - n/2 + v/2 are the same. The low states of eve-ven nuclei have T - n / 2  
even which implies T - T, even for 2) = 0 and 4 but T - Tp odd for 2) = 2. 

The number of entries in the table has been reduced by about 40% by taking 
advantage of an interesting symmetry which was noticed after the calculations were 
completed. The entries with a i in the TpT; column must therefore be interpreted 
in the following way. The formulae as given apply only for the upper sign. lb obtain 
the result for the lower sign, the substitution T + -(T + 1) must be made in the 
formulae and the result must be multiplied by an overall sign of (-l)*-*'. Each 
ne ative factor under a s uare root sign brings a factor fl so that, for example, /-+ -d& whereas T ( T +  1) - T ( T +  1). Although we do not 
yet fully understand the origin of this symmetry, it is probably related to the concept 
of negative angular momentum, see (19, 201. We stress that we have not assumed its 
validity but simply used it in tabulating separate results more concisely. The printed 
expressions in tables C1 and C2 have all been checked by comparison with direct 
numerical computation for particular values of w ,  p and T. 

.I,- ---,.,I .I.̂ . .I.,. ".....I.-," ' .L^ ."I.q-- - - ~  --,".-.a -I...":"", .... "...:A:-- L.. wc ~ccaii L I I ~  L L W  >yiiivvm iii LUG L ~ V I T S  aic ICIIILCU io yriyarcar ~ U I I I I I I I I G D  vy 

entries to 1' < 1.  The rasge of the va!ces nf T, m d  Ti b gcvemd by the :.!e that 

Appendix D. The K K t  matrices 

The onedimensional cases ( W O )  and ( w l )  with p - T even are given in equations 
(A5) of 1121 and (24) of [ l l ]  respectively. The two-dimensional cases ( w l )  and ( w 2 )  
both with p - T odd are given in [ll],  equations (25) and (27) respectively. New 
analytic formulae for the case ( w z )  with p - T even, which in general is three- 
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dimensional, are given below. 

J P Elliott et ai 

where p = T + 2k ,  k = 0,  1, 2, . . ., and 

MT-2,T-2 = 4 ( 2 ~  - 1 )  { - ( 2 k w + 1 2 k - 2 w 2 - 5 w + 6 ) ( 2 k - 2 w - 3 ) ( w + 1 )  
1 

- ( 6 k + 2 w + 1 1 ) ( 2 k - 2 w - 1 ) ( 2 w + 3 ) T + ( 8 k Z w + 2 0 k 2  

- 16kw2 - 48kw - 32k + 8w3 + 28w2 + 18w - 17)(2w + 3)"' 

+ 4 ( 2 k  - 2w - l ) ( Z w  + 3)(2w + 5 ) T 3  + 4(2w + 3 ) ( 2 w  + 5 ) p )  

x {3(2w + 3 - Z k ) ( w  + 1 )  + (Zw - 2k  - l ) ( Z w  + 3 )  

xT - 2(2w + 3)Tz}  

3 k ( k +  1 ) ( T  - l ) T ( T +  l ) ( T + 2 ) ( 2 T +  2 k +  1 ) ( 2 T +  2 k + 3 )  
( 2 T - 1 ) ( 2 T + 3 )  MT-Z,TtZ = 5 

{ - 3 ( k w  - 3k - w z  - 2w - 3 ) ( 2 k  - 2w - 3 ) ( w  + 1 )  
1 

MT,T = 2 ( 2 T -  1 ) ( 2 T +  3 )  

- (4kzw2  -40k2w-48k2  -8kw3 +28kwz  +4Okw-6k+4w4+ 12w3 

+53w2 +96w+45)T+2(12kzw2  + 24kzw+ 18k2 -24kw3 -8Okw' 

- 40kw + 33k + 12w4 + 56w3 + 73wz + 36w + 1 8 ) T Z  + 4 ( 4 k 2 u 2  

+ 8 k 2 w + 6 k 2 - 8 k w 3 - 2 0 k w z - 8 k w +  12k+4w4 

+ 1zw3 + 5 J  + 9 ) ~ ~  + 8 ( ( z w 2  + 4w + 3 ) k  - 2w3 

-7wz - 6 w ) T 4 }  

1 / 3 k T ( T  + 2 ) ( 2 T  + 1 ) ( 2 T  + 2k  + 3 )  
MT,Ttz = ( 2 ~  + 3 )  V ( 2 T -  1 )  

x { ( k w  - w z  - 3w - 3 )  - (2kw  + 3 k  - 2w2 - 6w - 3 ) T )  

1 
MTtZ,TtZ = ( 2 ~  + 3 )  { 3 ( k  - w ) ( k -  w - l ) ( w  + 2 ) ( w  + 3 )  

+ ( 8 k z w 2  + 3 8 k 2 w + 3 9 k Z  -16kw3-B6kw2-130kw-51k  

+ 8w4 + 48w3 + 8 8 u z  + 48w)T  + (4k2w2 + 16kzw + 15kz 

-8kw3 - 40kw2 - 56kw - 21k + 4w4 + 24w3 + 44wz + 2 4 w ) T ' ) .  

The expressions show the same symmetry under the transformation T - - (T+1)  
that was discussed in appendix C. However, since we have followed [ l l ,  121 by using 
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IC = & ( p - T )  instead of p ,  the transformation must also include k + IC+T+$. In this 

is invariant because the matrix 1s symmetric. 
way, I~K,+,,,+, t + K I C , - , ? T - ~  t and K K ; + ~ , ,  + K K & - ~ , ,  while Iilc$-2vT+2 
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